Concept 5: Molecular Genetics

Thinking Questions

1. Compare the two DNA sequences shown below. Transcribe them into mRNA and translate them into an									
amino acid se	guence. This is a mistake								
	GTG CAC CTC ACT CCA GAG GAG (Normal Hemoglobin) Should be:								
mRNA →	CACGUGGAGUGAGGONCOO CUC DNA: CACGTGGAGTGAGGT CTC C								
amino acids →	His Val Glu Stop Gly Coulen								
GTG CAC CTC ACT CCA G(G GAG (Sickle Cell Hemoglobin)									
mRNA →	CA CLOUGGAGUGAGGUCACICUC DNA: CAC GTGGAGTGAGGT CAC C								
amino acids →	His Val Glu stop Gly (Fis) Leu								
-	differences there are in the DNA, RNA and amino acid sequences that might exist between sequences.								
•	e type of mutation that is represented AND EXPLAIN, IN DETAIL, what effect this would have tein/pigment (be sure to mention the types of functional groups on the amino acids and								
Using The	rameded DNA - There is a point Mulahan (Missense)								
Valir Vin 4	he 6th amino acid. The valine is substituted for a glutamic acid. Valine is hydrophobic, glutamic 15 polar.								
~	cells, translation begins before transcription is finished. Give two reasons why this would								
EUKANA	Her have a nuclear membrane separating the								
1000-400	e in eukaryotic cells. Hes have a nuclear membrane separating the s of transription and translation.								
Eukayo	les must process the mensa transcript pour to translation								

TC

EcoRI alone	fragments of 6 kb and 14 kb
HindIII alone	fragments of 7 kb and 13 kb
EcoRI and HindIII	fragments of 2kb, 4kb, 5 kb and 9kb

restriction enzyme HindIII cleaves at 5'-AAGCTT-3'. A 20 kb circular plasmid is digested with each enzyme

3. The restriction enzyme EcoRI cleaves double-stranded DNA at the sequence 5'-GAATTC-3' and the

electrophoresis. The results are as follows:

individually and then in combination, and the resulting fragment sizes are determined by means of

Make a diagram of the circular molecule and indicate the relative positions of the EcoRI and HindIII restriction sites. (Hint: place one EcoRI site at '12 o'clock' and position the remainder relative to this site.)

(may be flipped)

Molecular Genetics Short Free Response (4 points)

When DNA replicates, each strand of the original DNA molecule is used as a template for the synthesis of a second, complementary strand. Compare and contrast the replication of the two new strands, **listing** and **explaining** at least one similarity and one difference in the methods of synthesis. You may draw a diagram to help answer the question, but be sure to explain your diagram in your answer.

Molecular Genetics Short Free Response – Scoring Guide

SIMILARITIES 2 POINTS	 Synthesize DNA in 5' to 3' direction (DNA polymerase III can only work in one direction)
MAXIMUM	 Use RNA primers to initiate replication (primase, DNA polymerase III must have a started sequence to be functional)
1 point for similarity, 1 point	 Both have RNA primers replaced with DNA (DNA polymerase I)
for elaboration (in parentheses)	
DIFFERENCES 2 POINTS MAXIMUM	 One strand is synthesized as one, continuous strand (leading strand), while the other is synthesized in fragments (lagging strand).
2 points for	 Lagging strand must use ligase to connect segments of DNA, while leading strand does not require use of this enzyme.
difference including description of both	withe reading strains does not require due of this enzyme.
strands	·

•			,		
				,	